SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	ELECTRICAL MACHINES
Code No.:	ELR 304-6
Program:	ELECTRICAL ENGINEERING TECHNOLOGY
Semester:	3. Laboratory reports are due within BVIF week
Date:	AUGUST, 1985
Author:	R.A. PEARMAN
	A - 80-100\$

New:

APPROVED:

Chairperson

Date

Revision: X

approved Jan 15/86

- 1 -

ELECTRICAL MACHINE DESIGN Course Name

ELR 304-6 Course Number

PHILOSOPHY/GOALS:

The object of this course is to develop the analytic skills to thoroughly understand the operation and application of AC and DC rotating machines under steady-state and dynamic operating conditions.

METHOD OF ASSESSMENT (GRADING METHOD):

- 1. Written tests will be conducted at regular intervals.
- 2. Short quizzes may be given without notice.
- 3. Laboratory reports are due within one week of the completion of an experiment. Late reports will be penalized 10% per day.
- 4. Grading:

A = 80.100% B = 66-79. C = 55-65% X = 50-55% R = Less than 50%

The grading weights are Theory-70% and Laboratory-30%.

TEXTBOOK(S):

ELECTRICAL MADBINERY by Fitzgerald, Kingsley and Umans McGraw--Hill

ELECTRICAL MACHINE DESIGN

ELR 304-6

BLOCK I: Magnetic Circuits and Transformers

At the end of this block the student shall be able to:

1. Develop and utilize equations describing;

- a) series and parallel magnetic circuits
 - b) flux linkage and equivalent flux
 - c) energy stored in magnetic circuits, magnetic force, hysteresis and eddy currents, core losses
 - d) inductance and self-inductance, force and torque, mutual inductance; energy, torque, and force in inductively coupled circuits
 - e) The ideal transformer
 - f) exciting current, core-loss current, and magnetizing current
 - g) leakage impedance, coupled circuit equations, and equivalent circuit diagram
 - h) open and short circuit tests, exciting admittance and equivalent impedance
 - i) transformer losses, efficiency and voltage regulation
 - j) auto transformers, instrument transformers
 - k) three-phase transformer connections, per unit quantities
 - 1) multicircuit transformers
 - m) transformer operation

BLOCK II: D-C Machines

At the end of this block the student shall be able to:

- Describe the structural characteristics of d-c machines. 1.
- 2. Develop and utilize equations and graphs describing:
 - a) M.M.F. and flux components
 - b) field excitation, armature reaction
 - c) load characteristics and generators
 - d) analyze steady-state performance of motors and generators
 - e) commutation
 - f) losses and efficiency
 - g) motor torque, speed-torque characteristicsh) transfer functions

 - i) steady-state and dynamic behaviour of machines
 - j) starting and speed-control including Ward-Leonard

BLOCK III: Synchronous Machines

At the end of this block the student shall be able to:

- Describe the structural and operating characteristics of synchronous 1. machines.
- Develop and utilize equations, phasor diagrams and graphs describin 2.
 - a) a-c armature windings, induced armature voltage, armature MMF
 - b) unsaturated inductances of cylindrical rotor machines and phasor diagrams.
 - c) idealized three-phase generator, general relationships in terms of inductances, and balanced loads.
 - short circuit and open circuit tests, voltage regulation and short d) circuit ratio
 - e) parallel operation of synchronous generators
 - f) real and reactive power versus power factor angle
 - g) synchronous machine excitation systems
 - h) direct and quadrature exis synchronous reactance of salient pole
 - i) Zero-power factor characteristics and Potier triangle.
 - j) torque angle characteristic of salient pole machines
- k) motor starting and applications
 - 1) transient performance and dynamic stability

BLOCK IV: Polyphase Induction Motors

At the end of this block the student shall be able to:

- 1. Describe the construction, operation, performance and applications of polyhase induction motors.
- 2. Develop and utilize equations, phasor diagrams and graphs describing
 - a) magnetizing reactance and leakage reactance
 - b) rotor current, rotor copper loss and slip
 - c) The equivalent circuit diagram and phasor diagram
 - d) slip-torque relationships
 - e) squirrel cage and wound motor starting and speed-control techniques

losses and efficiency .

- f) double squirrel cage and deep-bar motors
- g) no load and locked rotor tests.
- h) asynchronous generators
- i) solid-state drives for induction motors

motor torque, speed-torque characteristics

BLOCK V: Single-Phase Motors

At the end of this block the student shall be able to:

- 1. Describe the construction, operation, characteristics and applications of single phase induction motors.
- 2. Develop and utilize equations, phasor diagrams and graphs describing:
 - a) two revolving field theory
 - b) No-load and locked rotor tests
 - c) capacitor motor
 - d) self-synchronous motors

SLOCK Y: SINGLE-PRESE MOLDERS

the and of this block the student shall be able to:

Describe the construction, operation, characteristics and application of single phase induction motors.

. Sevelop and utilize equations, phason diagrams and graphs describin

- Vanadi bial malviover out i
- bl No-load and locked roter tests
 - on notlasts la
 - d) salf-synchroneus motors